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A TRANSIENT PROCESS DURING THE COMBUSTION OF A

CONDENSED MATERIAL

Yu. I. Babenko

On the basis of the methods set forth in [1] a precise solution has been /596*

found for one problem of the unsteady combustion theory which had earlier been

investigated by use of computer techniques [2].

Consider an unsteady process occurring on abrupt increase in pressure, a

process described by the problem given in [2]:

[ 0 - () 0=0 O=<,< O<x,<, (1)

a0 _- I(oTlp - V - I)'- I a v f(2q -q2). (2)

a = , -=, O,-e ,  '= O, (3)

0(0, r)= i, 0(00, ) =0. (4)

The notation is as follows [2]: 7 = p/p0 is dimensionless pressure, w = u/u0

dimensionless velocity, 0 = (T - TO) (T1 - T0) dimensionless temperature,

S= xu0/ a dimensionless coordinate, T = tu
2 /K dimensionless time, n =

= 2(1 + aT0 )/(l + aT1) a constant, and K the coefficient of thermal con-

ductivity.

Unsteady combustion rate w = w(T) on abrupt change in pressure from p0 to

pl' i.e., I(T > 0) = i 1 , is to be found.

In order to render the initial conditions zero ones, we introduce the

new variable

*Numbers in the margin indicate pagination in the foreign text.



Then from (1)-(4) we obtain the problem:

S--o() " = e- ( - o), (5)

a.1 [(o .C" - I)' - IJnv / (2- 1l1),

(6)

=l, o=-1, -=0, T=O,
X= (0, T) =0, X(oo, ) =0.

By means of the technique presented in [1] equation (5) may be written in the

form

F112 0) a-I 2 J a-I a a"12  a Ct -1/2
112 ------- , _ -1, -1

_ a-' a](a). 0 -1 -... -f-e-

Use is made here of the fractional differentiation operators defined by the

expressions

dvf() ( - v) - )'v/ () ds, v < 1.

The fundamental properties are as follows: /597

d' dr" dv+$() /(i). v-+ ni 1,
drT dr~ dr+

dv T d" dv-n g
d '=No' n d t" d =n.

In this case f and g are arbitrary functions. We can derive from (9) the

equation
.a112  t Ca a-1 2 0I =L(I--) - ,

2O 2 - 8 O- 1 2  8 -t 
(10)

Where operator L is defined in such a way that

S012 6 a --112 o,_-1 .L
IO -- 2 8 -1, 2 8 d -
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It can be demonstrated that the solutions of (10) are also the solutions of

(5), and in addition always satisfy the condition of limitation when - -.

The solutions of (10) also always satisfy the zero initial conditions for

E > 0, this following from the fractional differentiation properties. The

boundary condition at = 0 cap always be satisfied, since (10) is a first

order equation relative to 5. Hence we can consider the problem of (10),

(6)-(8) rather than problems (5)-(8).

We find the explicit form of operator L by setting

co 0-(l+n)/2
L = I D n  -(I+n)/2

n=0

Here Dn denote operators which depend upon 3V /r(v < n) and T. The explicit

form of Dn is determined from operator equation

n 12 o- o - 1  ,.o -(l n) 2 .. ,

In multiplication of the operators in the last equation use must be made of

the role deriving from the properties of fractional differentiation:

a aV  v  d aD a aDn

vD V D VD -P

o -prv-p
p=O( P a 3P V-P

( /9a should be assumed to be independent of T). Setting the operators to be

equal when the time derivative indices 3-(l+n)/2/3 -(l+n)/2 are identical, we

obtain a system of recurrent operator relations for Dn

'D o = 1,

22 /,
S') D s + 0 ,

8 +8- ,-{-i+5, % o + 2 if -o,
S. . . . . . . . . .. . . . . . ..
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Hence we find Dn , and consequently also L, in the form

/ 2 a 0 3 02 -2++ - -+ T0+ v -)-5,p +-T,,

Equation (1) is valid for all values > 0; hence in writing it for E = 0, we

find

- - - 2 (1-) .... (11) /598

By eliminating (Dx/ )C=0 from (11) by means of (6) we obtain the expression

relating combustion rate w(T) to pressure 7

(( -(2 ) (I ) + - (1 - m) -ft, 12 (2 )&- 4-
8 -&- -- --3 - +-B - e+ 8 2( - )+ .... (12)

Consider abrupt change in pressure from 7 = 1 to 7 = ~1. The solution may

be found in the form of the series

m=,Co+Cr' '+CT+CsT+C'I .
(13)

Substituting (13) in (12), and taking into account the fact that

"v r(-O- 1) I
dr '(p+ I-p - - ,
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and setting the coefficients to be equal when the powers are identical, we

find

Co = I + [I -(2q - v?) .- v 1/21

C, = (I - Co) (2 - Y) (qnrCo - I)- -r- (/2),

C, = [(I - C) (Co - 2) -- r (1/2) C, - 2,-v (2 - v)-IC (2 - ) (qn'Co - )-

C. = (-:r (5/2) C 2- 2q (2 - I)-' CIC2 + (109 - 13Co) (C1 /96 +

+ r (5/2) (1 - Co) (1 - Co + (C2/8))] (1 - (ft2)) (jafVCo - 1)-+ ...

-v
Let us calculate the value of w/wi = mWl with formula (13) for the

example considered in [2]. For n = 1.15, f1 = 2; 10; 50; 200, we obtain

respectively

W/W1 = 1.41 0.60T1/2-0.0330.1343/2 ...,

W/1 = 1.64-0.77~T1/2-1.98T-2.54T3 - ..

W/W = 1.71-0.81T1/2-7.75-32.3T32-

w/wI = 1.73-0.83T1/2-51.5 -204T3/2-

The solution obtained may be employed for study of the initial stage of a

transient process. The series apparently are asymptotic in nature; hence the

calculations must be terminated at the minimum term. Comparison with the

results presented in Figure 2 in [2] points to the following conclusion. The

divergence of the results is the smaller, the smaller is the value of T. A

relative deviation of less than 10% for 71 = 2; 10; 50; 200 occurs over the

intervals T < 0.6; 0.15; 0.12; 0.05 respectively. Study is made in [2] of the

behavior of w/wl for T < 0.6. Thus in this particular example the analytical

method is more convenient than the numerical one for relatively small pressure

drops (f1 < 2), since it affords the possibility of plotting a solution over

a longer time interval.
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